Willer Select – NEET Special: Chemical Bonding (Lectures 1–5)

Willer Select – NEET Special Batch

Chemical Bonding Quick Revision (Lectures 1–5)
Lewis Structures · VSEPR · Hybridization · MOT · Bond Parameters

Lecture 1: Lewis Structures & Chemical Bonding

1. Why Chemical Bonds Form?

  • Atoms bond to achieve stability (noble gas-like configuration)
  • Driven by energy minimization: more stable = lower energy

2. Octet Rule & Exceptions

ConceptExplanationExamples
Core Principle Gain/lose/share to get 8 valence electrons Na+, Cl-
Exceptions
  • Incomplete Octet: Be (4e-), B (6e-)
  • Expanded Octet: SF6 (12e-), SO42-
  • Odd Electron: NO (11e-)
BeCl2, SF6, NO

3. Types of Chemical Bonds

TypeFormationPropertiesExamples
IonicElectron transferHigh MP/BP, soluble in waterNaCl
CovalentElectron sharingLow MP/BP, bad conductorCH4, H2O
CoordinateOne atom donates both e-Directional, polarNH4+

4. Lewis Structure Drawing Steps

  1. Count total valence e- for all atoms
  2. Identify central atom (least EN, never H/F)
  3. Connect atoms with single bonds
  4. Complete octets of terminal atoms, add extras to center
  5. Form multiple bonds if needed for central atom's octet
Examples:
  • CO2: O═C═O (16e-)
  • NH4+: All H–N–H bonds, N (8e-), H (2e- each)
  • CO32-: Resonance forms, 24e-

5. Formal Charge (FC)

  • FC = (Valence e-) – (Non-bonding e-) – ½(Bonding e-)
  • Best Lewis structure has FC values closest to zero

6. Common Mistakes to Avoid

  • Forgetting to add/subtract for ions
  • Ignoring resonance and expanded octet
Practice: Draw Lewis structures for: (a) SO2 (b) N2 (c) BF3 (d) NO3-

Lecture 2: VSEPR Theory & Molecular Geometry

1. What is VSEPR?

  • Electron pairs (bonding/lone) repel to minimize repulsion, shaping molecule

2. Key Terms

TermDefinition
Steric Number (SN)Total electron domains (bonds + lone pairs)
Lone Pair (LP)Non-bonding pair on central atom

3. Predicting Geometry: 5 Steps

  1. Draw Lewis Structure
  2. Count electron domains
  3. Use SN to assign Electron Geometry (see table)
  4. Ignore LPs to get Molecular Geometry
  5. Adjust for LP-LP > LP-BP > BP-BP repulsion
Steric No.Electron GeometryAnglesMolecular Geometry (with LPs)Example
2Linear180°LinearBeCl2
3Trigonal Planar120°Bent (1 LP, e.g. SO2)SO2
4Tetrahedral109.5°Pyramidal/BentNH3, H2O
5Trigonal Bipyramidal90°,120°See-saw/T-shape/LinearSF4, XeF2
6Octahedral90°Square pyramidal/planarXeF4
Tip: Memorize all geometries for Steric Number 2-6 and corresponding angles!
VSEPR Flow:
Lewis Structure → Steric Number → Electron Geometry → Lone Pairs → Molecular Geometry
    
Practice: Predict shape and bond angle: (a) BF3 (b) SF6 (c) PCl5 (d) I3-

Common errors: Confusing electron/molecular geometry, neglecting LP effects.

Lecture 3: Valence Bond Theory (VBT) & Hybridization

1. VBT Core Idea

  • Covalent bonds form by overlap of half-filled atomic orbitals
  • Bond directionality depends on axes of overlap (geometry comes from this)

2. Bond Types

TypeOverlapRotationStrengthExamples
Sigma (σ)Head-onFreeStrongH2, Cl2
Pi (π)Side-onRestrictedWeakO2, C2H4

3. Hybridization: Why & How

  • Explains molecule shape not predictable by VBT
  • e.g. CH4 is tetrahedral because of sp3 mixing

4. Hybridization Table

TypeOrbitalsGeometryAngleExamples
sp1s+1pLinear180°BeCl2, CO2
sp21s+2pTrigonal planar120°BF3
sp31s+3pTetrahedral109.5°CH4
dsp21d+1s+2pSquare planar90°[Ni(CN)4]2-
d2sp32d+1s+3pOctahedral90°SF6

5. How to Identify Hybridization

  1. Draw Lewis Structure
  2. Determine Steric Number = σ bonds + lone pairs
  3. Match SN: 2→sp, 3→sp2, 4→sp3, 5→dsp3, 6→d2sp3
Practice: Identify hybridization & bond types: (a) C2H2 (b) NH3 (c) XeF4 (d) CO32-

NEET Tip: Map hybridization–shape–angle for fast recall!

Lecture 4: Molecular Orbital Theory (MOT)

1. Core Idea of MOT

  • Atomic orbitals form molecular orbitals (MOs) that cover the entire molecule
  • Aufbau, Pauli, Hund's rules apply to fill MOs
  • Explains paramagnetism of O2, resonance, bond order trends better than VBT

2. Main Rules: LCAO-Method

  • Linear Combination of Atomic Orbitals (LCAO) for MO construction
  • Bonding MOs (σ/π): lower energy, Antibonding MOs (σ\*/π\*): higher energy (node/star)

3. Typical MO Energy Patterns

MoleculeMO OrderBond OrderMagnetism
H2σ(1s) < σ\*(1s)1Dia
He2σ(1s) < σ\*(1s)0Dia
B2π(2p) < σ(2p)1Para
O2σ(2p) < π(2p) < π\*(2p)2Para

4. Bond Order Formula & Stability

  • BO = ½ [bonding e- – antibonding e-], BO > 0 = stable, higher BO = stronger bond

5. Magnetism in MOT

TypeSpin StateExample
ParamagneticUnpairedO2, B2
DiamagneticAll pairedN2, H2

6. Heteronuclear Diatomics (CO, NO)

  • MO energies closer to more EN atom
  • NO: BO=2.5, paramagnetic; CO: BO=3, diamagnetic
Practice: BO for: (a) O2+ (b) N2+ (c) F2
Magnetism: (a) C2 (b) O2-

Common mistakes: Using N2 MO order for O2/F2; forgetting antibonding e-
Memorize MO diagrams for O2 & N2; these are NEET favourites!

Lecture 5: Bond Parameters & Polarity

1. Bond Length

FactorEffectExample
Atom SizeLarger atom → longer bondC–F < C–I
Bond OrderHigher BO → shorter bondC–C > C=C > C≡C
HybridizationMore s-character → shorter bondC(sp3)–H > C(sp)–H

2. Bond Angle

  • Lone pairs decrease angle: CH4 109.5° > NH3 107° > H2O 104.5°
  • Substituent E.N.: More EN = smaller angle (NF3 < NH3)

3. Bond Energy

ConceptExplanationExample
DefinitionEnergy to break 1 mole of bonds (gas)H–H: 436 kJ/mol
Bond OrderHigher order = stronger bondC≡C: 839 > C–C: 347
TrendDecreases down groupH–F > H–Cl > H–Br

4. Electronegativity (EN)

Pauling: F (4.0) > O (3.5) > Cl (3.0) > C (2.5) > H (2.1)

ΔENBond TypeExample
0–0.4Nonpolar covalentC–H
0.5–1.6Polar covalentO–H
≥1.7IonicNaCl

5. Dipole Moment (μ)

  • μ = charge × separation, units: Debye
  • Symmetrical = μ = 0 (CO2, BF3), asym = Polar (H2O: 1.85 D)
MoleculeShapeμ (D)
CO2Linear0
H2OBent1.85
NH3Trigonal pyramidal1.47

6. % Ionic Character

  • % Ionic = [1 – e–0.25(ΔEN2)] × 100
  • NaCl: 67% ionic; HCl: 19% ionic

7. Resonance & Bond Length

  • Resonance equalizes bonds (O3: 128 pm; between single and double)
Practice: 1. Arrange by bond length: (a) C–N, C≡N, C=N (b) C–O, C=O, C≡O
2. Predict polarity: (a) BF3 (b) NF3 (c) CH2Cl2

Common mistakes:
  • Assuming all linear molecules are nonpolar (e.g., HF is polar!)
  • Ignoring effect of LPs on bond angles
  • Confusing bond energy with dissociation energy
NEET Tip: Memorize ΔEN thresholds and μ (H2O, NH3, CO2)!
Next: Practice & Revision – NCERT questions and NEET-style MCQs.
For Hindi version, type: हिंदी में बनाओ
Share your doubts for personal feedback.

Comments

subscribe

Popular posts from this blog